Obesity resistance and enhanced glucose metabolism in mice transplanted with white adipose tissue lacking acyl CoA:diacylglycerol acyltransferase 1.
نویسندگان
چکیده
Recent studies have identified the white adipose tissue (WAT) as an important endocrine organ that regulates energy and glucose metabolism via a number of secreted factors. Mice lacking acyl CoA:diacylglycerol acyltransferase 1 (DGAT1), a key enzyme in mammalian triglyceride synthesis, are protected against diet-induced obesity and glucose intolerance because of increased energy expenditure and enhanced insulin sensitivity. Because DGAT1 is highly expressed in WAT, we hypothesized that DGAT1 deficiency affects the expression of adipocyte-derived factors that regulate energy and glucose metabolism. Here we show that the transplantation of DGAT1-deficient WAT decreases adiposity and enhances glucose disposal in wild-type mice. Analysis of DGAT1-deficient WAT revealed a twofold increase in the expression of adiponectin, a molecule that enhances fatty acid oxidation and insulin sensitivity, and this increase may account in part for the transplantation-induced metabolic changes. Our results highlight the importance of the endocrine function of WAT and suggest that an alteration in this function contributes to the increased energy expenditure and insulin sensitivity in DGAT1-deficient mice.
منابع مشابه
Role of adipocyte-derived factors in enhancing insulin signaling in skeletal muscle and white adipose tissue of mice lacking Acyl CoA:diacylglycerol acyltransferase 1.
Mice that lack acyl CoA:diacylglycerol acyltransferase 1 (DGAT1), a key enzyme in mammalian triglyceride synthesis, have decreased adiposity and increased insulin sensitivity. Here we show that insulin-stimulated glucose transport is increased in the skeletal muscle and white adipose tissue (WAT) of chow-fed DGAT1-deficient mice. This increase in glucose transport correlated with enhanced insul...
متن کاملEffects of DGAT1 deficiency on energy and glucose metabolism are independent of adiponectin.
Mice lacking acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), an enzyme that catalyzes the terminal step in triacylglycerol synthesis, have enhanced insulin sensitivity and are protected from obesity, a result of increased energy expenditure. In these mice, factors derived from white adipose tissue (WAT) contribute to the systemic changes in metabolism. One such factor, adiponectin, increases...
متن کاملDissociation of obesity and impaired glucose disposal in mice overexpressing acyl coenzyme a:diacylglycerol acyltransferase 1 in white adipose tissue.
Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of two DGAT enzymes known to catalyze the final step in mammalian triglyceride synthesis. Mice deficient in DGAT1 are resistant to obesity and have enhanced insulin sensitivity. To understand better the relationship between triglyceride synthesis and energy and glucose metabolism, we generated transgenic (aP2-Dgat1) mice in which e...
متن کاملIncreased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1.
Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of two known DGAT enzymes that catalyze the final step in mammalian triglyceride synthesis. DGAT1-deficient mice are resistant to diet-induced obesity through a mechanism involving increased energy expenditure. Here we show that these mice have decreased levels of tissue triglycerides, as well as increased sensitivity to insulin an...
متن کاملEnhancing energy and glucose metabolism by disrupting triglyceride synthesis: Lessons from mice lacking DGAT1
Although the ability to make triglycerides is essential for normal physiology, excess accumulation of triglycerides results in obesity and is associated with insulin resistance. Inhibition of triglyceride synthesis, therefore, may represent a feasible strategy for the treatment of obesity and type 2 diabetes. Acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) is one of two DGAT enzymes that cata...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 111 11 شماره
صفحات -
تاریخ انتشار 2003